A Khatri-Rao Subspace Approach to Blind Identification of Mixtures of
Quasi-Stationary Sources

Abstract

Opverall, I read and almost understood the Khatri-
Rao framework for blind identification of mix-
tures of quasi-stationary sources in (Lee, 2013).
In this report, the detail problem statement and
the Khatri-Rao subspace-based methods are pre-
sented. Especially, I design new experiments
with the synthetic quasi-stationary source signals
(while the original paper used real speech record-
ings as the source signals). Numerical results of
performance of the blind identification algorithm
in terms of average mean square error are ana-
lyzed.

1. Introduction

Blind identification of a linear instantaneous mixture of
quasi-stationary sources (QSS) has received much attention
by its application to blind separation of speech and audio
sources in microphone arrays.

The idea behind QSS-based blind identification is to exploit
statistically time-varying characteristics of QSS to retrieve
the mixing system. There are two main classes of formu-
lations for QSS-based blind identification. The first one
is based on parallel factor analysis (PARAFAC) which the
blind identification problem is formulated as a three-way
data array fitting problem (Sidiropoulos, 2000; Rong, 2005;
Yeredor, 2002). The second one is joint diagonalization (JD)
which the problem is formulated as a problem of diagonal-
izing multiple matrices (Pham, 2001; Ziehe, 2004).

From these formulations, effective blind identification al-
gorithms have been developed. Under PARAFAC, there
are trilinear alternating least squares (TALS) (Rong, 2005)
and alternating-columns diagonal-centers (ACDC) (Yeredor,
2002). Under JD, including Pham’s JD (Pham, 2001), fast
Frobenius diagonalization (FFDiag) (Ziehe, 2004).

In (Lee, 2013), an alternative formulation for QSS-based
blind identification using Khatri-Rao (KR) subspace is pro-
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posed. It should be noted that KR subspace was also pro-
posed for DOA estimation of QSS (Ma, 2010). The key
insight is the KR subspace formulation decomposes the
blind identification problem into a number of less complex
per-source. This is the significant different from PARAFAC
and JD, which are inherently joint-source formulations.

Then, a specialized alternating projections (AP) algorithm
for dealing with the simpler per-source problems is devised.
A distinguishing result with this AP algorithm is its theoret-
ically provable convergence. Using this important insight, a
new blind identification algorithm is demonstrated to have
good performance analysis.

The rest of the report is organized as follows. Section 2
describes the problem statement. In Section 3, the Khatri-
Rao subspace-based methods are carried out. Numerical
results are given in Section 4. Finally, Section 5 concludes
the report.

Notation: Diag(x) denotes a diagonal matrix whose diag-
onal elements are x1, ..., Z,; vec(.) is a vectorization op-
erator, where for X = [z1,...,2,,] € C" ™, we have
vec(X) = [2F, ... 2L ] € C"™; vec!(.) represents the
inverse operation of vec(.); ® is the Kronecker product; ®
is the Khatri-Rao product, where, given A = [aq, ..., ax]
and B = [b1,...,b], wehave A® B = [a1 @ by, ...,ap ®
bi]; R(X) denotes the range space of X; Apin(X) and
Amaz (X)) denotes the magnitude-wise smallest and largest
eigenvalues of X, respectively; ||z||, and ||z||  are the vec-
tor 2-norm and matrix Frobenius norm, respectively; X t
denotes the Moore-Penrose psedo-inverse of X; X;.; de-
notes a submatrix of X that consists of the first £ columns
of X.

2. Problem Statement
2.1. Signal Model and Assumptions

Consider a standard BID-QSS formulation as follows
x(t) = As(t) + v(t),t = 1,2, ... (1)

where z(t) = [z1(t), ..., zn(t)]T € C¥ to be an N-sensor
received signal vector, s(t) = [s1(t),...,sx(t)]7 € CK
to be a source signal vector, with K being the number of
sources, A = [ay, ...,ax] € CV*X to be a mixing matrix,
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and v(t) € CV to be noise. It is assumed that

(A1) The source signals, s;(t), k = 1, ..., K, are statistically
independent of each other.

(A2) Each sk(t) is zero-mean wide-sense quasi-stationary,
i.e., E[|sk(t)|?] changes with ¢, but it is fixed within
every local time interval [(m — 1)L + 1,mL], m €
[1, L]. L is window length.

(A3) The noise vector, v(t), is wide-sense stationary with
mean zero and covariance o21. And, it is statistically
independent of s(t).

The local covariances of x(t) is defined as
Ry = Elz(t)z(t)"],t € [(m — 1)L +1,mL] (2)

Note that, in practice, R,, can be estimated
by local covariance sampling, e.g., R, ~
(1/L) Z;n:L(mq)Lﬂ x(t)z(t)". From (1), it is shown that
R,,, follows to the model

R,, = AD, A" + &1, (3)

where D,,, are the local covariances of s(t) and are given by
D, = Diag(dm)a in which d,,, = [dm,la dm,Qv <oy dm,K]T,
dm x = E[|sk(t)|?] forany t € [(m — 1)L + 1, mL].

2.2. Local Covariances Model and Khaitri-Rao
Subspace

Suppose that we have measured a number of M local co-
variances of x(t), or Ry, ..., Ryr. We need to exploit the
subspace characteristics of Ry, ..., R for blind identifica-
tion of A.

Assume a noise covariance-free scenario as follows
R = ADp AR m=1,.. .M 4)
Consider the vectorization of R,,, in (4)
Ym 2 vec(Rp) = (A © A)d, € CN° (5)
where A* ® A is a self-Khatri-Rao product of A and takes
the form A* © A = [a] @ a1, ...,a} Q@ ak] € CN*xK

Eq. (5) is virtually identical to a linear instantaneous mixture
signal model, with a mixing matrix A* ® A and a source
vector d,,,. Hence, the insight is that exploiting the self-
Khatri-Rao product structure of the virtual mixing matrix
A* ® A to identify its physical counterpart, A.

The following assumptions are made.

(A4) The mixing matrix A has full Kruskal rank, i.e., any
min{ K, N'} columns of A are linearly independent.

(AS) Let ¥ = [dy,...,dp]T € CM*E The matrix ¥ has
full column rank.

Fact 1. Assume (A4). The matrix A* ® A has full column
rank if K < 2N — 1 (Sidiropoulos, 2000).

Moreover, (A5) means that the source local variances are
assumed to be sufficiently time-varying and different in
their variations, thereby satisfying the full column rank
assumption on W.

= Y1, ym] = (A* O A)\I;T c (CN2><JVI ©)

Since A* ® A and ¥ are of full column rank (assuming
K < 2N —1),s0Y hasrank K and admits a singular value
decomposition (SVD)

Y =UXVH, (7)

where ¥, € RE*X is the nonzero singular value matrix,

Us € CN**K and V, € CMXK are the associated left and
right singular matrices, respectively. And, we have

R(Us) = R(A* © A), (8

The subspace R(Uy) or R(A*®A) will be called the Khatri-
Rao (KR) subspace.

2.3. Preprocessing Method
2.3.1. NOISE COVARIANCE REMOVAL

It is well known that A\in(Rpn) = Ain(AD, AR + o2
and A\pin(AD,, AH) > 0 (Stoica, 2005). For N > K,
we have \,in(AD,, A7) = 0. Hence, for this strictly
overdetermined case, we can estimate o2 by

62> = min

m=1,...,

and then subtract A\?] from R,,,. It should be note that this
procedure has been previously suggested in (Rahbar, 2005).

2.3.2. PREWHITENING PROCEDURE

The prewhitening procedure helps transform the problem A
becomes unitary (Belouchrani, 1997). Consider the time-
averaged global covariance as follows

1Y
D _ N AH
R=—>" R, =ADA",

m=1

(10)

where D = (1/M)Y"M_. D,,. Since D is a positive
definite matrix, we can apply a square-root factorization
R = BBH where B € CV*¥ has full column rank (for
N > K). The prewhitening operation is given by

H

R, =B'R, (B")" im=1,.,M (1)
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The prewhitened local covariances R, can be written as
Rm :AD7nAH7m: 1,..., M, (12)

where A = Bt AD'/? € CK*X js the transformed mixing
matrix, and D,,, = D~'D,, the transformed source local
covariances.

3. Method

3.1. Column-Decoupled Blind Identification
3.1.1. KR SUBSPACE CRITERIA 1

BID-QSS aims at estimating the mixing matrix A from the
observed local covariances Ry, ..., Rjs, given the number
of sources K. From the KR subspace identity (8), we see
that any column aj, of the true mixing matrix A satisfies
a;, ® ai, € R(Us). This observation leads to the following
criterion for blind identification of A:

Criterion 1:

find ae€CVN
such that a* ® a € R(Us).

Criterion 1 suggests a column-decoupled BID approach to
find one of the a;’s, assuming unique identifiability. Con-
sider the following theorem:

Theorem 1. Assume (4), (A4), and (AS). A sufficient and
necessary condition for a satisfies Criterion 1 & a = cay,
for some k and constant ¢ € C is when K < 2N — 2.

Theorem 1 confirms that Criterion 1 can operate in the
underdetermined case.

3.1.2. ALTERNATING PROJECTIONS ALGORITHM

To implement Criterion 1, it is natural to formulate it as an
optimization problem as follows
min (¢* ® a)? P (a* ® a)
a€CN (13)
2
st llal2 =1,

where P;- = I—U,UH denotes the orthogonal complement
projector of the KR subspace R(Us). In the other words,
minimizing the projection residual of a* ® a on R(Us).
The approach is based on an alternative formulation of (13)
that will lead to an iterative algorithm. The problem (13) is
equivalent to
min ||aa*®a—h||§
a€R,a€CN heCN? (14)
st. ae{xl},lali=1,heRU,),

The equivalence of problems (13) and (14) is shown as
follows. Fixing (v, a), the optimization of (14) over h is a
linear projection problem, whose solution is

h=UUR (aa* @ a), (15)

By substituting (15) into (14), problem (14) can be shown
as
2
min (I -U U™ (aa* @ a)
ae{*1},]lalZ=1 H -
= min (¢* ®a)?Pl(a* ®a),
lall3=1

(16)

which is exactly the same as problem (13).

Problem (14) has an interpretation of finding a pair of closets
points in two sets, namely, b € R(U;) and (o, a) € {1} x
UN, where U™ = {x € C"|||z|5 = 1}. In additions, the
formulation in (14) can be solved by applying the alternating
projection (APs) (Boyd, 2003).

Essentially, the idea of AP is to fix («, a) and solve (14) with
respect to (w.r.t.) h at one time, and then fix h and solve (14)
w.r.t. (o, a) at another time. For the partial optimization
of (14) over h, we have seen that the solution is (15). Let
examine the partial optimization of (14) over («,a). By
denoting H = vec~!(h) € CN*¥ problem (14) can be
expressed as

. H 2
min ||caa™ — H
a,a,HH ) HF (17)
st. a€{£l},|a|; =1,vec(H) € R(Us),

For any o € {£1} and Ha||§ = 1, the objective function of
(17) yields

[|aaa? — H||i —1—2aRe{a Ha} + |H||%

18

> 1~ 2lRe{a” Ha) + || A} o

where equality in (18) holds when « =
Re{a’Ha}/|Re{a Ha}|. Moreover, the second

term in (18) is minimized when |Re{a Ha}| is maximized,
and the latter is achieved when a aligns to a magnitude-wise
most significant eigenvector of (H + H*) /2 (note that
Re{a’Ha} = L1af'(H + H™)a). Hence, the partial
optimization of (17) w.r.t. («, a) has a closed-form solution
given by

_ 1 ) o Ama (3(H +HT))
a—Qmax(2(H+H ))’a_|>\max(é(H+HH)) 5
(19)

where Apax(X) denotes the largest eigenvalue of X
(magnitude-wise), and @m.x(X) denotes a unit-2-norm
eigenvector of X associated with Apax (X). The implemen-
tation of the AP method is shown in Algorithm 1.

3.2. Complete Blind Identification Using The
Column-Decoupled Solutions
3.2.1. KR SUBSPACE CRITERIA 2

A significant advantage of the column-decoupled BID crite-
rion (in subsection 3.1) is that an efficient algorithm can be
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Algorithm 1 AP algorithm for problem (14).
Input: the KR subspace matrix Usg;
1: H := vec }(Ux(),¢ ~ CN(0,I) (random initializa-
tion);
repeat

3.0[. }Amax(%(H—FHH))"
4: H := vec Y (U, UH (aa* ® a));
until a stopping criterion is satisfied.
Output: « as an estimate of a column of the mixing
matrix.

developed. However, Criterion 1 does not tell how all the
columns of A can simultaneously be identified.

This subsection will study how to estimate the whole A
based on the column-decoupled BID solutions. Consider
the following criterion:

Criterion 2:

find A e CVN*XK @ ¢ CKxK
such that U, = (A* © A)O.

From (8), it holds true that any column of U lies in R(A* ®
A).

3.2.2. SUCCESSIVE OPTIMIZATION FOR UNITARY A

We can use an optimization formulation, i.e., least-squares
fitting, to implement the Criterion 2 as follows
* 2
oo B U= (470 )0 @0)
It should be noted that there exists pragmatic algorithms,
e.g., ACDC and TALS, that have been found to produce
reasonable estimate for problems (20) (Boyd, 2003). How-
ever, ACDC and TALS require initialization of A. In fact,
poor initializations are likely to slow down convergence or
leading to some unsatisfactory estimates. Hence, a two-state
approach can be considered in which running AP multiple
times to find some columns of A (or all) and then using
them to initialize for ACDC or TALS.

Especially, for the overdetermined case, we can develop
an efficient algorithm in which transforming A to a unitary
matrix by prewhitening procedure.

When A is unitary, © is also unitary. Hence, we consider a
modified form of the KR subspace fitting formulation (20)
as follows:
e dmin U= (A7 0 48]
CCKxK QcCKXK 21)
st. 00 =1

Let Q = ©'1. By the rotational invariance of ||| -, we can

rewrite (21) as

. * 2
min UsQ — (A" © A)||%

(22)
st. QFQ=1.

In addition, by substituting by = Usqx, € R(Us), where g

is the kth column of @), problem (22) can be equivalently

expressed as

jmin, lehk—wakng
Adfseeh i =
s.t. hk eRWUs), k=1,..,K, (23)
hh =0, VEk#I,
lhills=1, k=1,..K.

Let modify problem (23) by replacing the constrains
Hthi =1by ||ak||§ =1 as follows

mln ZHhk_ak@akHQ

71;

s.t. hkeR(U), k=1,..,K, (24)
hfh =0, Vk;él,

laxl2 =1, k=1,..,K.

A key observation is that problem (24) can be expressed as
(25) where
Hy(hiy .oy 1) = {h € R(U) WP hy = 0,1 =1, ..., k—1}.
(26)
The express in (25) suggests that we can apply a successive
optimization strategy. To be specific, we decouple (25) into
K sequentially processed stages. At stage k, we aim at

solving

(a;whk) = arg mln |ht — af, ® ak||2
s.t. HCLkHQ =1 hk E Hk<h1,.. hk 1)

27)

where fll, . fzk_l are the decisions in the previous stages

..k — 1.  Moreover, it can be showq that Asince
hl, . hk 1 € R(Us), the subspace Hpy(hi,..., hp_1)
takes an explicit form

whi1) =R(Py Uy (28)

Hk(EL

Where ﬁl:k—l = U/:Ll,...,]/:llk;_]_], P}#I: = I —

k—1
ﬁlzk,l(H’fk_lﬁlzk,l)’lﬁffk_l. Now, we can see the
interesting connection: problem (27) is equivalently the AP
problem (14), with the original subspace matrix Ug being
replaced by PL " U As a result, problem (27) can be

solved by applymg AP algorithm (Algorithm 1). If the
previous stages 1, ..., k — 1 have perfectly identified some



Submission and Formatting Instructions for ICML 2021

min |h1 — a} ® ay |5 + min  ||hy — a} @ ag + ... + min |hi — al @ ax |
2 2 2
laxlly = 1, lasll; =1, laxlly =1,
hl ER(US) h2 EHg(hl) hKEHK(hl,...,hK_l)

Algorithm 2 Prewhitened alternating projection algorithm.
Input: local covariance matrices R1, ..., Rjs;
It R= g 5y R
2: compute a square-root factorization R = BB
3: R,, := B'R,,(B"H m = 1,..., M; (prewhitening)
4: compute the SVD (U,X,V) of Y =
[vec(Ry, ..., vec(Rm))], Us := Ur.k,, and set k = 1;
5: run Algorithm 1 with PIJ% - U as the input to obtain

(dk, hk), where Hl:k—l = [hl, ceey hk—l];

6: set k := k + 1 and goto step 5 until k£ > K
7 A= Blay, ..., ax]; (post-dewhitening)
Output: A as an estimate of the mixing matrix

Table 1. Simulation Parameters

Name Symbol  Value
Sequence length T 79800
Number of sensors N 5
Number of sources K 4
Fixed time frame L 200
Error bound € 10-6
Maximal number of iteration iter,,,, 100
Minimal local time frame Liow 100
Maximal local time frame Loypp 300

of the mixing matrix columns, h; = a] ® a1, ..., hx—1 =
ay_, ® ap—1, then we can show that

Hk(ibl7...,il,k_1) :R([GZQ@CL]C,...,G}}@GK]), 29)

in which the previously found columns are removed from
the subspace.

The AP-based successive optimization method proposed
above is summarized in Algorithm 2. The algorithm is called
as the prewhitened alternating projection algorithm (PAPA)
for convenience. Overall, there are two major advantages of
PAPA: (1) PAPA deals with K AP problems only; (2) Since
A is unitary, the AP convergence is expected to be fast.

4. Experiment

In this section, some simulations are provided to analyze
the advantages of the proposed algorithms. The simulation
parameters are given in Table 1. The simulation settings
are described as follows. The mixing matrix A € RV*K
is randomly generated at each trial with columns being

(25)

T T T T T T
2 4
0

2 4

L L L

L L
0 1000 2000 3000 4000 5000 6000 7000

I I I I I
0 1000 2000 3000 4000 5000 6000 7000

0 1000 2000 3000 4000 5000 6000 7000

I L
0 1000 2000 3000 4000 5000 6000 7000

Figure 1. Illustration of a segment of synthetic quasi-stationary
source signals s (t). The only the real parts of the signals are
plotted.

normalized to unit 2-norm.

The quasi-stationary source signals, s (t), were syntheti-
cally generated by a random generation procedure given
in Table 2 (Ma, 2010). This procedure generates a locally
stationary zero-mean complex Laplacian process. It’s vari-
ances randomly varying from one frame to another. In addi-
tions, the duaration of each local time frame, L, is randomly
drawn following a uniform distribution on [Ljgw, Lypp)-
The purpose of this process is to simulate a more realistic
situation in which the local stationary periods are uncertain
and varying; e.g., in speech.

In order to obtain more local covariances under limited sig-
nal length, 50% overlapping frames is employed in acquir-

ing Ry’s, ie, Ry = (1/L) S50 VitE otz
Moreover, the noise covariance removal procedure (in sub-
section 2.3.1) is applied. For the proposed algorithms,
a standard stopping criterion is adopted. Specifically,
| — fn=D] < ¢ = 1075, where f(") is the objective
value of the algorithm at the nth iteration.

The performance measure is the average mean square error
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The average MSE versus SNR

MSE (dB)
Ve

25 \ 4

Figure 2. The average MSE of the PAPA algorithm versus the SNR.

Table 2. Generation of Synthetic Quasi-Stationary Signals (Ma,
2010)

Given

Step 1.

Bounds Liyy, Ly, and a sequence length 7.

Teuwr = 0.

Randomly generate L following a uniform distribution on
[Llou.'-, Lupp]-

Randomly generate o following a uniform distribution on [0, 1].

Fort =T, Tour + 1, ..., Tour + L — 1, randomly generate
Step 4. | s(t) = Sg(t) + jSi(t) where Sg(t) and Sy () are i.i.d Laplacian
distributed with zero mean and variance o2 /2.

Step 2.

Step 3.

Step 5. | Ty := Tpur + L. If T, < T then go to Step 2.

s(t)i—y-

Output

(MSE), defined as

. K &ﬂ(k)
min Z N

rell, KA ||a1~c||2
Cl,...,Cx € £1

MSE =

(30)
where 1II is the set of all bijections = : {1,..,K} —
{1,...,K}; A and A are the true and estimated mixing ma-
trices, respectively.

The s Tgnal -to-noise gatio (SNR) 2is defined as SNR =
(7 E[l|As@)|5])/Elllo()]l5], where T = LM is
the total number of samples.

In Fig. 1, a segment of the synthetic quasi-stationary signals
is illustrated. As we can see, the frame intervals of the 4
source signals are not uniform and not synchronized. I apply
the KR subspace-based methods by choosing a fixed frame
period of L = 200 (as Table 1).

Fig. 2 shows the average MSE of the PAPA algorithm versus

The average MSE versus M

20 L 4

MSE (dB)

P i

0 50 100 150 200 250 300 350 400 450 500
Number of available frames, M

Figure 3. The average MSE of the PAPA algorithm versus the
number of frames (M) with SNR = 25 dB.

the SNR. The increase of SNR results in the reduction of
MSE since the decrease of the effect of noise. For example,
when SNR runs from —10 dB to 25 dB, MSE gets the values
between —5 dB to —38 dB.

Fig. 3 investigates the average MSE of the PAPA algorithm
versus the number of frames or the number of local covari-
ances (V) with SNR = 25 dB. We can see that PAPA works
better for larger number of frames. When M > 150, MSE
gets the minimal value, e.g., —37 dB and MSE is quite
stable when M € [150, 450].

5. Conclusion

Maximum Ratio Transmission and Zero-Forcing Beamform-
ing methods were investigated to solve the optimal multiuser
transmit beamforming problems. Specially, performance
analysis of these methods were shown in terms of the aver-
age sum rate and the feasibility rate.

By doing this project, I have learned something: (1) Maxi-
mum Ratio Transmission and Zero-Forcing Beamforming
methods; (2) Have an understanding of some multiuser trans-
mit beamforming optimization algorithms (3) Try to under-
stand how authors manipulate the optimization problems
(e.g., convexity, KKT conditions); (4) Get some hand-on
experiences on implementing some algorithms on Matlab.
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